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Motivation/Objective
 Identify relevant and sufficient morphological metrics for the 

prediction of specific mechanical performances.

 Simulate random instances of material microstructures with 
target morphological features.
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Outline

 Ellipsoidal growth structures (EGS)
– Definition
– Resolution
– Simulation

 Morphological characterization of single cells
– Minkowski tensors – Expressions
– Results

 Mechanical systems of interest
– Eshelby tensor fields of EGS cells
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Ellipsoidal growth structures (EGS)
Ellipsoidal growth structures (EGS) are morphological models 
defined with marked point patterns (MPP). Underlying 
microstructures are constructed after a rule invoking the MPP.

Example: Tessellations.

• MPP:

• Rule:

Every cell      with boundary        can be reconstructed from 
common curves       . Can we solve for       ? 

MPP Underlying microstructure

Resolution
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EGS – Transformation 
Solving for parameterizations of common curves        is difficult. 
To circumvent this difficulty, we introduce a diffeomorphic 
transformation.

Let every point of a growing ellipse be given by a time-
dependent mapping from a unit circle: 

We let the common curves be

with                                                   .

Finding parameterizations      of
is much easier than parameterizing        directly.  
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EGS – Transformation (illustration) 
Solving for charts      is equivalent
to solve for times at which a given
point in        is intersected by a 
moving ellipse of fixed dimensions.

Contact function:

Still, common points (locations of triple junctions) must be 
solved numerically.
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EGS – Types of microstructures 
For the same definition of common curves, i.e.      , we try to 
generate different types of underlying microstructures by 
changing the contact functions.

Space filling models (Tess.): Non-space filling models:

(2 common curves per 
pair of neighbors)

(1 common curve per pair of neighbors)
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EGS – Resolution
I) Discretize and solve numerically for lists of neighbors.

II) Solve for common points with parameterizations of common curves.

 

and repeat for each pixel.Compute contact times, attribute pixel, 

Get list of neighbors

and repeat for each 
                 neighbor.

               Solve for common    
point,

select & bound local   
charts, 

Get atlas of
cell boundary.
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EGS – Simulation
For random materials, EGS can be interpreted as realizations of a 
marked point process                                     with marks                      

Realizations can be drawn by:
– 1) Simulating a (hard-core) point process,
– 2) Simulating the marks after a conditional distribution on the

    nucleation sites.

Teferra and Graham-Brady (2015): Realizations of polycrystalline 
microstructures can be obtained considering no correlation of marks 
between sites (cells) that reproduce size and inertial aspect ratios:
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EGS – Simulation
However, for the purpose of simulation, the point process does not 
need to be stationary.

Realization of a non-stationary process / Functionally graded 
microstructure:
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Single grain morphology characterization
Single grains are characterized using Minkowski tensors:

Measures of mass distribution:
Measures of surface distribution:

Curvature-weighted measures of 
surface distribution:
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Expressions of Minkowski tensors for EGS
Using the parameterization of the EGS, the following 
expressions are obtained: 

where       and           are 
scalar coefficients obtained 
by integration of the locally 
defined contact functions   .  

Effect of 
common points
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Expressions of Minkowski tensors for EGS
Interdependences between different metrics allow us to reduce the 
number of integrals to compute:

Because       is closed,                 and                               .  

From                     we find                               ,

                                   and                                .  

From 

From

Similarly,

                                         ,                                                and so on ...
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Minkowski tensors – Results
Normalized radial projections of some even-ordered metrics:

What types and orders of Minkowski tensors are sufficient 
metrics for a grain? What about “mixed orders”?
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Minkowski tensors – Results
Normalized radial projections of some odd-ordered metrics:

We would like to understand which of these can be used to 
predict mechanical behaviors.
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Mechanical systems under study
#1 Isotropic Eshelby problem  #2 Elastic behavior of periodic

                                                  anisotropic polycrystals

- Response of the system almost 
entirely limited to morphology 
(and Kolosov's constant),

- No effect of neighbors.

- Can we relate Hill (or Eshelby) 
tensor fields to the Minkowski 
tensors?

- Effect of neighboring grain  
morphology,

- Effect of lattice mis-orientations.

- Can we understand how stiffness 
and morphology interact for the 
localization of elastic fields?
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Eshelby tensor fields for EGS cells
Using the parameterizations of the cell boundaries, expressions 
for the unbounded (and bounded, not here) Eshelby tensor fields 
can be recovered in terms of the marks of the MPP.

Using the irreducible representation by Zheng et al. (2007):

with

and
 Related to 

morphology 
only

From
MPP
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Conclusion
 Morphological models are being developed for different types 

of material microstructures,
 

 Parameterizations are obtained for the underlying 
microstructures of these models,

 Exhaustive characterization of morphologies is performed 
using these parameterizations,

 Correlations between these morphological metrics and the 
localization of elastic fields is being investigated.

 Next steps:
– Complete sensitivity analysis of mechanical performance to 

morphological metrics,
– Identify relevant metrics and target distributions,
– Investigate plastic behaviors,
– Perform backward analysis for identification of underlying 

morphological models.
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